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Abstract--In relation to microrheology of blood, a theoretical approach to the motion of a red 
blood cell in a plane Couette flow between two parallel plates is made with emphasis on effects 
of wall. The red blood cell is assumed to be an elliptic cylindrical particle with a thin, inextensible 
membrane moving like a tank-tread along its perimeter and to contain a Newtonian fluid inside. 
Fluid motions are analysed numerically both inside and outside the particle on the basis of the 
Stokes equations, using the finite element method. 

A quasi-static equilibrium condition leads to the solution for the motion of the particle. It is 
shown that two types of motion exist (a stationary orientation motion and a flipping motion), 
depending on the viscosity ratio of inner to outer fluid, the axis ratio of the elliptic cylinder and 
the ratio of particle size to channel width. The results are applied to capillary blood flow. 

1. I N T R O D U C T I O N  

Blood is regarded as a suspension of red blood cells (RBCs) in plasma. The rheological 
properties of blood depend crucially on the mechanical properties of the RBCs. Thus, it is 
important to study the motion of a single RBC in shear flow of plasma for a good 
understanding of the bulk rbeology of blood. 

RBC consists of a thin membrane which encloses a Newtonian solution of hemoglobin 
and it may be deformed easily at a constant surface area. Due to its deformability, the 
motion of RBC in flow shows individual features. It is reported experimentally that RBC 
may exhibit two types of motion in a simple shear flow. At a low shear rate, the RBC 
undergoes a flipping motion, while at a high shear rate, the RBC exhibits a steady 
orientation motion with its membrane rotating uniformly along its perimeter (tank-tread 
motion) (Schmid-Schonbein & Wells 1969; Goldsmith & Marlow 1972; Fischer et  al. 1978; 
Schmid-Sehonbein & Gaehtgens 1981). Quite recently, it has been demonstrated clearly in 
in-vitro experiments that the RBC membrane could be in tank-tread motion in blood flow 
through capillaries (Gaehtgens 1981). 

It is not suitable to assume RBC as a rigid particle or a liquid drop for describing the 
motion of RBC in flow. In fact, a rigid particle exhibits only the unsteady flipping motion 
in shear flow (Jeffery 1922; Happel & Brenner 1965). A liquid drop shows a non-uniform 
rotation of its surface, while the RBC membrane moves uniformly due to its inextensibility. 

The transition between the two types of RBC motion in a simple shear flow has been 
studied theoretically by several investigators. Kholeif & Weymann (1974) adopted a two- 
dimensional model for RBC, and Keller & Skalak (1982) adopted a three-dimensional 
model. In their theoretical approaches, the RBC is assumed to contain a Newtonian fluid 
inside and to be bounded by an inextensible thin membrane that allows to have a tank- 
treading motion. Their results provide theoretical evidences to the existence of both 
stationary orientation motion and unsteady flipping motion in a simple shear flow. 

It is not doubtful that RBCs may interact with each other in blood flow. In addition, 
vessel wall may affect the motion of RBCs near it. Therefore, it is an important task to 
study how RBCs interact with each other or with a wall for blood flows in capillaries or 
near vessel wall (Sugihara & Niimi 1983). The motion of a single RBC in shear flow has 
not been clarified under the cell--cell interaction or the cell-wall interaction yet. 

In this paper, we make a numerical approach to the motion of a RBC in a plane 
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Couette flow with emphasis on effects of wall. The RBC is modelled as a cylindrical particle 
with an elliptic cross-section which has a thin, inextensible flexible membrane and contains 
a Newtonian fluid inside; its shape is prescribed as an independent entity. The only allowed 
motion of the membrane is along the perimeter of the cell such that the shape of the cell 
is not changed. The particle is suspended in another Newtonian fluid and placed at the 
centerline between two parallel plates moving along themselves to opposite direction at a 
speed. 

It is assumed that inertial effects are neglected so that the Stokes equations govern the 
fluid motions both inside and outside the particle. The motion of  the particle is determined 
under quasi-static equilibrium conditions, using the finite element method in terms of the 
primitive variables, such as velocities and pressure (Olson & Tuann 1978). 

2. FORMULATION 

We consider the motion of a model RBC in a plane Couette flow between two parallel 
plates. The coordinates system (x, y) may be so chosen that the center of a model RBC is 
at the origin, and the parallel plates are y = +_d (figure 1). The velocity of the upper plate 
is taken to be Uw in the x-direction while that of the lower plate is - Uw. 

The model RBC is assumed to be an elliptic cylindrical particle with its semi-axes a and 
b (rl = a/b > 1); it contains an incompressible Newtonian fluid of  viscosity/~inside and the 
membrane moving uniformly along its perimeter. 

The suspending medium is an incompressible Newtonian fluid of  viscosity #'. Since the 
fluid motion both inside and outside the particle is assumed to obey the Strokes equations, 
the following quasi-static equilibrium conditions are satisfied: (1) The torque acting on the 
particle vanishes. (2) The resultant tangential force acting on the membrane also vanishes. 
Note that the resultant drag and lift acting on the particle always vanish as the particle is 
placed at the centerline of the plates. Under the conditions (1) and (2), the motion of the 
particle is determined together with the stresses acting on both sides of the membrane. 

In the numerical calculations, we use the finite element method in terms of velocities and 
pressure; the domain of interest is divided into a finite number of  triangular elements. The 
shape of the particle is approximated by a polygon inscribed in its elliptic cross-section. The 
velocity components and the pressure within each element are made polynomial approxi- 
mation in space variables. Then, simultaneous equations for velocity components and 
pressure at the nodes obtained on the basis of variational principles are solved to determine 
the flow fields. 

External flow 
The undisturbed flow is expressed as U0 = (ky, O) where k = Uw/d. The angle between 

the major axis of  particle and the x-axis is denoted by 0; its positive value means a 
counterclockwise rotation. 

U w 

Figure I. Flow configurations. 
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The velocity fields must satisfy the two-dimensional Strokes equations and the con- 
tinuity equation: 

Op = u,V2u, Op O'-X ~y = [£ev2o, [2. l] 

OU OD 0 2 0 2 
~x + ~yy = O, and V2 = ~X2 -t- Oy2,-- [2.2] 

where p is the pressure and u = (u, v) is the velocity vector. 
Far from the particle, the velocity field is assumed to approach to a plane Couette 

flow U0. On the surface of  the particle, non-slip condition is adopted. Then, the boundary 
conditions are 

u = ( U . ,  0)  at y --- d, [2.31 

u = ( -  U . ,  0) at y = - d, [2.4] 

u = tUs + et2 [2.5] 

on the surface of the particle, and 
u = U o  [2.6] 

far from the particle, 
where e = (--y,  x), t is unit vector (counterclockwise) tangent to the membrane. The 
quantities Us and t2 represent the tank-treading velocity of the membrane and the angular 
velocity of the particle, respectively; their values are to be determined later as part of the 
solution. In numerical calculation, we apply the condition [2.6] at x = +__ l, where I is taken 
sufficiently greater than d. 

To solve this problem, we consider three cases: O) the stationary rigid particle in plane 
Couette flow (Us = 0, fJ = 0), (ii) the stationary particle with its membrane tank-treading 
in an otherwise quiescent fluid (Uw = 0, [2 = 0), and (iii) the rigid particle flipping with an 
angular velocity in an otherwise quiescent fluid (U, = 0, Us = 0). If we superimpose these 
cases, the solution for the problem can be obtained since the basic equations are linear. 
For each case, the stresses acting on the membrane are calculated to determine both the 
torque T ~ and the tangential force F, ' .  

Internal flow 
The flow fields are determined under the boundary condition: 

u = t U s  [2.7] 

on the surface of the particle. 
The stresses acting on the membrane are calculated to obtain the torque T i and the 
tangential force Fm ~. 

The motion of the particle 
It is possible to examine the motion of the particle from the previous results. We can 

determine Um and t2 under the quasi-static equilibrium conditions, as functions of  three 
parameters: the viscosity ratio v(=/~i/#'), the axis ratio ;l(=a/b; shape factor), and the 
ratio 2(=x/r-~/d; size factor). 

3. RESULTS AND DISCUSSION 

We have calculated the torque 7" and the tangential force Fs ' acting on the membrane 
for the external flow in three cases (i), (ii) and (iii). The coefficients C/ ,  C/are defined by 

- Te/#eUd and - Fs~/l~'U, respectively, where U means Uw, U,. and ~ for cases (i), (ii) 



152 MASAKO SUGIHARA AND HIDEYUKI NIMI 

and (iii), respectively. These coefficients are even and periodic functions of  0 with a period 
~. In figure 2 are shown the coefficients Cr ~ and C I  against 0 for r /=  1.44, $ = 0.5. In case 
(i), C /  increases as 0 increases from 0 to lt/2, while C/becomes  smaller as 0 becomes larger. 
Clearly, C / i n  case (ii) and C• in case (iii) are almost constant, but increasing 0 increases 
C• in case (ii) and decreases C / i n  case (iii). 

For internal flow, T i and Fro" are calculated for various values of  r/. In figure 3 are plotted 
the coefficient C / (  = - Ti/#iUmv/-~) and C / (  = - F j / g ' U , , )  against r/. Note that both of 
the coefficients are very small for r /=  1, corresponding to the particle of  circular cross- 
section. 

cZ _ _  
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15 ~ ' ~ ° ' =  ='-'%- . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure. 2. Coefficients C i  and C i  vs angle of  inclination 0 for external flow 01 = 1.44, ,~ = 0.$). 
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Figure 3. Co.flicients Cr ~ and C~ vs axis ratio r /for internal flow. 
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We superimpose the solutions for external flow in three cases and for internal flow to 
apply the conditions: 

T ~ + T i = O, Z F m  ~ + F. ,  i = O, [3.1] 

? referring to the summation of three cases. Then, we can calculate the tank-treading 
velocity Um and the angular velocity ~. Figure 4 shows U~/U~ and £J/k vs 0 for r /=  1.44, 
A = 0.5 and several values of v. It is interesting to note that fl decreases monotonically 
with increasing 0. Especially, for v below vc (approx. 21), there exists 0* of 0 where fl 
becomes zero; 0* falls between 0 and 7t/4. Let us call the angle 0* as stationary orientation 
angle and denote the velocity Um at 0* by Urn*. Since fl corresponds to change of  0 in time, 
0 increases in time within its range smaller than 0", where fl is positive. On the contrary, 
0 decreases in time within its range larger than 0". Consequently, the angle of inclination 
0 approaches in time asymptotically to the stationary angle 0". Note that the tank-treading 
velocity Urn* is negative. These results indicate that for v below vc the particle undergoes 
the stationary orientation motion at the angle of  inclination 0* with membrane tank- 
tending in clockwise sense. In the range v below vo increasing v decreases 0* and U,*. 
Especially, 0* becomes zero at v = vc. It is interesting to note that an increase in 
viscosity ratio decreases the tank-treading velocity in the stationary orientation motion. 
Figure 5 shows the velocity vectors of  medium near the stationary orientation motion of  
the particle for T/= 1.44, ~ = 0.5 and v = 3.6 (0" = x/6, Um*/U, = -0.18) .  

The angular velocity fl is always negative when v is larger than v~ (figure 4); this 
indicates that the particle is periodically flipping in clockwise sense. Furthermore, fl is 
small near 0 = 0 but large near 0 = ~/2, suggesting that the particle spends a greater 
proportion of the period of  motion with its major axis aligned with the flow direction. 
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Figure 4. Tank-treading velocity U,,/U, and angular velocity fl/k vs angle of  inclination 0 for 
= 1.44 and ~ = 0.5, 
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J 

Figure 5. Velocity vectors of medium around the particle in stationary orientation motion for 
v =3.6, r/= 1.44 and 2 =0.5 where 0* =It/6 and Um*/Uw= -0.18. 

The stationary angle 0* depends on the viscosity ratio v, the shape factor ,7 and the 

size factor X. In figure 6 is plotted 0* as a function of  ,7 for X -- 0.5 and several values of  
v. It  is seen that for  a constant  r/, 0* decreases as v increases f rom 0 to v c until 0* vanishes 
at v = vc. In addition, 0* decreases monotonical ly  with an increase in ,7 for a small value 

of v, while 0* comes to minimum at a value of  ,7 for a large value of  v. Figure 7 is a plot 

of  0* vs X for ,7 = 1.44. The angle 0* decreases with increasing X for a value of  v near or 

smaller than 1. For  v larger than its value, the angle 0* increases with increase in X. 
It  is obtained that  two types of  mot ion of  the particle occur depending on the values 

of  v, r /and X (the stat ionary orientation mot ion and the flipping motion). In figure 8 is 
plotted the transition value vc of  v vs t / fo r  three values of  2. The r / -  v c curves distinguish 
the two types of  motion;  the upper  region corresponds to the flipping motion, while the 

lower to the stationary orientation motion.  Since the ,7 - v~ curve has a minimum point 

o.,! wo 
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Figure 6. Stationary angle of inclination 0* vs axis ratio ,7 for X = 0.5. 
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Figure 7. Stationary angle of  inclination 0* vs size factor ). for )7 ffi 1.44. 
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Figure 8. Transition value o f  viscosity ratio v vs axis ratio ff for ~. -- 0.4, 0.5 and 0.61. 

at a value of  t/(say r/c ) between 1 and 2, the particle transits from the flipping motion to 
the stationary orientation motion as ~ becomes away from t/c with a constant value of v. 
If we consider the relationship between v# and ~. through the intersections of  T/-- constant 
and a family of t / -  v# curves, we see that the transition value v# increases with increasing 
A. This indicates that the larger particle has a tendency to exhibit the stationary orientation 
motion. 
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4. CONCLUDING REMARKS 

The motion of the RBC model in a Couette flow between two parallel plates has been 
analysed numerically using the finite element method. This method is very useful for treating 
complicated body-shapes. In our formulation, the primitive variables have been used, 
because they are more physical and have lower order than other variables such as stream 
functions. 

The present results indicate that the motion of the particle may exhibit the transition 
between a stationary orientation motion and an unsteady flipping motion, depending on the 
three parameters: viscosity ratio v, shape factor ~ and size factor 4. Decreasing viscosity ratio 
or increasing size factor promotes the stationary orientation motion, with the opposite 
variations inducing the flipping motion. For constant v and 4, the particle with shape factor 
ec has a tendency to exhibit the flipping motion. For e beyond ec, increasing r/favours the 
stationary orientation motion. 

Our results have been obtained in the two-dimensional model, but they give some insight 
into blood flow. The numerical results have demonstrated how the wall may promote the 
particle in a stationary orientation motion. This provides a theoretical evidence to the 
stationary orientation motion of RBCs with the membrane tank-tread observed in an 
extremely narrow cone-plate "rheoscope" (5/~m. and 15/~m width) (Fischer et al. 1978). 

In the present analyses, the shape of the particle is assumed to be prescribed without 
any change in motion. If the particle is deformable, it must be determined under the 
influence of stresses acting on its membrane. In addition, the particle experiences neither 
drag nor lift since it is placed at the centerline between two parallel plates. If the particle 
is placed off-center, it will experience some drag or lift to translate with tank-treading 
and/or flipping. Thus, the motion of the deformable particle in flow through a narrow 
channel is left for further study. 

Acknowledgements--The authors would like to express their hearty thanks to Professors 
T. Tatsumi, K. Gotoh and Y. Sone for their valuable discussions. This paper was 
supported by a Grant-in-Aid for Fundamental Scientific Research from the Ministry of 
Education, Science and Culture, and a Research Grant for Cardiovascular Diseases from 
the Ministry of Health and Welfare. 

A part of this work was presented at the 1st China-Japan-U.S.A. Conference on 
Biomechanics, on 9-12 May at Wuhan in China. 

REFERENCES 

FISCHER, T. M., STOHR-LmsEN, M. & SCHMID-SCHONBEIN, H. 1978 The red cells as a fluid 
droplet: Tank tread-like motion of the human erythrocyte membrane in shear flow. 
Science 202, 894--896. 

GAErlTGENS, P. 1981 In vitro studies of blood rheology in microscopic tubes. In: The 
Rheology of Blood, Blood Vessels and Associated Tissues (Edited by D. R. GROSS & N. H. 
C. HWANG), pp. 257--275. Sijthoff & Noordhoff, Amsterdam. 

GOLDSm'rH, H. L. & MARLOW, J. 1972 Flow behavior of erythrocytes--I. Rotation and 
deformation in dilute suspensions. Proc. Roy. Soc. Lond. B182, 351-384. 

HAPPEL, J. & BP.ENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall, 
Englewood Cliffs, New Jersey. 

JEFFERY, G. B. 1922 The motion ofellipsoidal particle immersed in a viscous fluid. Proc. Roy. 
Soc. Lond. A102, 161-179. 

KELLER, S. R. • SKALAK, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear 
flow. J. Fluid Mech. 120, 27-47. 



TWO-DIMENSIONAL APPROACH TO THE MOTION OF A RED BLOOD CELL 157 

KHOLEIF, I. A. & W~.x,~t,~, H. D. 1974 Motion of a single red blood cell in plane shear flow. 
Biorheology 11, 33%348. 

OLSON, M. D. & TUANN, S. Y. 1978 Primitive variables versus stream function finite element 
solution of the Navier Stokes equation. In: Finite Element in Fluids (Edited by R. H. 
GALLAGHER, O. C. ZIENKIEWICZ, J. T. ODEN, M. MORANDI CECCHI & C. TAYLOR). Vol. 
3, pp. 73-87. Wiley, New York. 

SCHMID-SCHONBEIN, H. ~ WELLS,  R. 1969 Fluid drop-like transition of erythrocytes under 
shear. Science 165, 288-291. 

S¢nUro--ScHoNnEIN, H. & GAEnTO~S, P. 1981 What is red cell deformability? Scand. 
,1. clin. Lab. Invest. 41 (Suppl. 156), 13-26. 

SUGII-IAP, A, M. & NILe, H. J. 1983 Asymmetric flow of a cylindrical particle through a 
narrow channel. Trans ASME, Set. E: J. Appl. Mech. (in press). 


